235 research outputs found

    Accurate template-based modeling in CASP12 using the IntFOLD4-TS, ModFOLD6, and ReFOLD methods

    Get PDF
    Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors. Secondly, the ReFOLD method for fixing errors through iterative QA guided refinement. For our automated predictions we developed the IntFOLD4-TS protocol, which integrates the ModFOLD6_rank method for scoring the multiple-template models that were generated using a number of alternative sequence-structure alignments. Overall, our selection of top models and ASE scores using ModFOLD6_rank was an improvement on our previous approaches. In addition, it was worthwhile attempting to repair the detected errors in the top selected models using ReFOLD, which gave us an overall gain in performance. According to the assessors' formula, the IntFOLD4 server ranked 3rd/5th (average Z-score > 0.0/–2.0) on the server only targets, and our manual predictions (McGuffin group) ranked 1st/2nd (average Z-score > −2.0/0.0) compared to all other groups

    A Kernel for Open Source Drug Discovery in Tropical Diseases

    Get PDF
    Open source drug discovery, a promising alternative avenue to conventional patent-based drug development, has so far remained elusive with few exceptions. A major stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. This paper introduces the results from a newly assembled computational pipeline for identifying protein targets for drug discovery in ten organisms that cause tropical diseases. We have also experimentally tested two promising targets for their binding to commercially available drugs, validating one and invalidating the other. The resulting kernel provides a base of drug targets and lead candidates around which an open source community can nucleate. We invite readers to donate their judgment and in silico and in vitro experiments to develop these targets to the point where drug optimization can begin

    Structural genomics is the largest contributor of novel structural leverage

    Get PDF
    The Protein Structural Initiative (PSI) at the US National Institutes of Health (NIH) is funding four large-scale centers for structural genomics (SG). These centers systematically target many large families without structural coverage, as well as very large families with inadequate structural coverage. Here, we report a few simple metrics that demonstrate how successfully these efforts optimize structural coverage: while the PSI-2 (2005-now) contributed more than 8% of all structures deposited into the PDB, it contributed over 20% of all novel structures (i.e. structures for protein sequences with no structural representative in the PDB on the date of deposition). The structural coverage of the protein universe represented by today’s UniProt (v12.8) has increased linearly from 1992 to 2008; structural genomics has contributed significantly to the maintenance of this growth rate. Success in increasing novel leverage (defined in Liu et al. in Nat Biotechnol 25:849–851, 2007) has resulted from systematic targeting of large families. PSI’s per structure contribution to novel leverage was over 4-fold higher than that for non-PSI structural biology efforts during the past 8 years. If the success of the PSI continues, it may just take another ~15 years to cover most sequences in the current UniProt database

    Purification and functional characterisation of rhiminopeptidase A, a novel aminopeptidase from the venom of Bitis gabonica rhinoceros

    Get PDF
    This study describes the discovery and characterisation of a novel aminopeptidase A from the venom of B. g. rhinoceros and highlights its potential biological importance. Similar to mammalian aminopeptidases, rhiminopeptidase A might be capable of playing roles in altering the blood pressure and brain function of victims. Furthermore, it could have additional effects on the biological functions of other host proteins by cleaving their N-terminal amino acids. This study points towards the importance of complete analysis of individual components of snake venom in order to develop effective therapies for snake bites

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Regulatory Elements within the Prodomain of Falcipain-2, a Cysteine Protease of the Malaria Parasite Plasmodium falciparum

    Get PDF
    Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain

    A conditional neural fields model for protein threading

    Get PDF
    Motivation: Alignment errors are still the main bottleneck for current template-based protein modeling (TM) methods, including protein threading and homology modeling, especially when the sequence identity between two proteins under consideration is low (<30%)

    Local Alignment Refinement Using Structural Assessment

    Get PDF
    Homology modeling is the most commonly used technique to build a three-dimensional model for a protein sequence. It heavily relies on the quality of the sequence alignment between the protein to model and related proteins with a known three dimensional structure. Alignment quality can be assessed according to the physico-chemical properties of the three dimensional models it produces
    corecore